
Seminar paper on: Read mapping on de Bruijn graphs

Jouko Niinimäki

Seminar paper
UNIVERSITY OF HELSINKI
Department of Computer Science

Helsinki, December 2, 2016

Faculty of Science Department of Computer Science

Jouko Niinimäki

Seminar paper on: Read mapping on de Bruijn graphs

Computer Science

Seminar paper December 2, 2016 9

read mapping, de Bruijn graph, bioinformatics

Sequencing and aligning the resulting reads on reference contigs is a common task in the field
of bioinformatics. Still, there are no consistently good software to perform the alignment well
in different situations. An idea is represented here to use a de Bruijn graph generated from
the reads as a reference instead of contigs. Tests on generated and real data implies that with
this method both the alignment quality and computational resource usage are improved.

ACM Computing Classification System (CCS):
Theory of computation → Design and analysis of algorithms → Data structures design and
analysis → Pattern matching
Applied computing → Life and medical sciences → Computational biology → Molecular
sequence analysis

Tiedekunta — Fakultet — Faculty Laitos — Institution — Department

Tekijä — Författare — Author

Työn nimi — Arbetets titel — Title

Oppiaine — Läroämne — Subject

Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidoantal — Number of pages

Tiivistelmä — Referat — Abstract

Avainsanat — Nyckelord — Keywords

Säilytyspaikka — Förvaringsställe — Where deposited

Muita tietoja — Övriga uppgifter — Additional information

HELSINGIN YLIOPISTO — HELSINGFORS UNIVERSITET — UNIVERSITY OF HELSINKI

Contents

1 Introduction 1

2 De Bruijn Graph 3

3 The Algorithm 4

4 Results 6

5 Conclusion 8

References 9

ii

1 Introduction

One frequently permormed task in the field of bioinformatics is sequencing
a genome of some organism. That is, finding out the DNA sequence of the
individual. The state-of-the-art technologies cannot yet produce full DNA
sequence from a species but instead short reads, subsequences of length of a
few hundred bases (A, C, G or T). The sequencing machines produce millions
or even billions of these reads from random positions of the sequence without
any location information1. A full DNA sequence must be then composed
from these reads. This procedure is called read mapping and can be done
de novo (without any reference) by using the overlapping parts of the reads
to sort them, or by using another sequence, for example of a closely related
species, as a reference. In some cases the reference is not a full sequence but
a set of shorter subsequences, so called contigs, which often are results of de
novo assembly, as the assembly methods are rarely capable of constructing a
full sequence, but multiple contigous subsequences instead. In this article
we consider only the case of reference contigs, or more accurately, the case
where the reads of the reference sequence are available.

As the sequences are usually huge (from some microbe’s several millions
to for example human’s over three billion bases [RUC+11, pages 275, 478])
and so is the number of the reads, the mapping process is a time consuming
task and requires a lot of computational power. In practice the mapping is
done by aligning the reads against the reference sequence in the best possible
way. Aligning means positioning sequences next to each other in a way
that shows the assumed relation of the sequences. To find the best possible
alignment one needs a way to evaluate the result. One commonly used way is
to calculate a score based on the matches and mismatches in the alignment.
Example alignments along with their scores calculated by assigning +5 for
the matching positions and -4 for the mismatching positions are shown in
Figure 1.1.

Finding the optimal alignment of two sequences (using dynamic program-
ming) takes O(nm) time, where n and m are the lengths of the sequences
[SW81]. As the length of the reference sequence and the total length of all

1Based on https://www.illumina.com/, 10.11.2016

1

the reads to be aligned can be huge, numerous faster heuristic algorithms
have been created to reduce the computation time [LH10]. One group of
these algorithms is based on creating a hash table from each k-mer, a subse-
quence of length k, and their positions in one of the sequences. The other
sequence is then scanned k-mer by k-mer to find matching positions in the
hash table. The possible findings, hits, are then extended in both direction
using previously mentioned scoring system (and possibly combined together
with other close hits) to get the final alignments. The principles of the
algorithm are illustrated in Figure 1.2. Another commonly used heuristic
way to find alignments is based on suffix-arrays (or trees) with effective use
of Burrows-Wheeler transformation.

Although reasonably fast, these algorithms and mapping techniques on
contigs are far from perfect. One idea to improve the mapping quality is to
use a graph as a reference instead of contigs. One way to create contigs is
based on constructing a graph from the reads and extracting them from the
paths of the graph that seem continuous. Resulting contigs don’t however
necessarily represent the real sequence, some of them share similar parts
and some of them are often abandoned. One idea of aligning the reads
to the graph instead of contigs is to reduce the problems that aligning on
the contigs have. A practical algorithm based on de Bruijn graph (and a
software called BGREAT utilizing the idea) is presented in next two chapters.
Results and analysis are shown in the latter part of the paper. This seminar
paper is mostly based on [LCRP15] and therefore all the noncited pieces of
information (including tables and algorithms) can be aasumed to be based
on that paper.

GGCTAGCTAGCTGTACGTATAT
 GCCAGCAGTAC

+5 +5 +5 +5 +5 +5 +5 +5 +5-4 -4 = 38

Figure 1.1: An example alignment and calculation of it’s score.

2

CGTGTAC 0

 GTGTACT 1

 TGTACTA 2

 GTACTAA 3

 TACTAAG 4

 ACTAAGC 5

 CTAAGCT 6

sequence2:

TAATACTAAGGGCCTC
3

k = 7

sequence1:

CGTGTACTAAGCT

Figure 1.2: An example of locating hits between two sequences. A hash table
is created for each k-mer and their positions on sequence 1. Sequence 2 is
scanned through to find same k-mers (using each k-mer to query the hash
table).

2 De Bruijn Graph

De Bruijn graph of order k for sequence S is a directed graph where each
different k-mer in the sequence is represented as a node in the graph. Two
nodes v and u are connected with an edge from v to u if they are found
consecutively v before u in sequence S. The formal definition can be seen
below:

Definition 1. De Bruijn graph (V, E) of order k for sequence S is a direceted
graph iff:
a) Each unique k-mer in S is a node in v and there are no other nodes
b) Two nodes u and v have an edge from u to v iff k-mer u found in S[i...i+k]
overlaps k-mer v so that v is found in S[i + 1...i + k + 1]

The original sequence can be obtained from the graph by first initializing
the (empty) sequence with k-mer from the start node and then following a
certain path from the start node to the end node while appending the last
letter from each node to the sequence. As we can clearly see, there can also
be another paths through the graph, so some of the sequence information is
lost while constructing the graph.

3

As we notice, the total length of De Bruijn graph can be at most n−k +1
nodes (n is the length of sequence), with k letters on each node. The size of
the graph can be reduced without losing any information by using compacted
de Bruijn graph. Compacted de Bruijn graph can be modified from de Bruijn
graph by combining sequential nodes that have only one ingoing and outgoing
edge to form a larger node with length k + c− 1, where c is the number of
the nodes combined. These larger nodes are called unitigs.

Each edge (u, v) in the graph can be considered to represent the shared
part of the two nodes u and v, that is a (k − 1)-mer. These (k − 1)-mers are
called overlaps. Also, as the DNA alphabet consists only of four characters,
each node can have at most four incoming and four outgoing edges (overlaps).
Each incoming edge to a single node represents the same overlap with each
other as do also the outgoing ones.

AGCTTGCCTTGCCA

AGC

 GCT

 CTT

 TTG

 TGC

 GCC

 CCT

 CTT

 TTG

 TGC

 GCC

 CCA

AGC GCT CTT TTG TGC GCC CCT

CCA

AGCT CTT TTGC GCC CCT

CCA

3-mer

De Bruijn graph:

Compacted De Bruijn graph:

A B

C

Figure 2.1: An example image illustrating de Bruijn graph. A: a sequence
and it’s 3-mers. B: a de Bruijn graph made out of sequence in A. C: a
compacted de Bruijn graph of the same sequence.

3 The Algorithm

The algorithm can be divided into two phases: (1) aligning the reads on
unitigs of a compacted de Bruijn graph created from the reads and (2)
aligning them on the whole graph using overlaps. In step (1), for each unitig
larger than a read, the read is aligned against the unitig using traditional
methods. In BGREAT, a software created by the authors, this is done with
external software, Bowtie2 [LS12]. The alignment is done as if the unitig

4

was a single target sequence. In step (2) a hash table is created from the
graph’s overlaps using overlaps ((k−1)-mer) as keys and their position in the
graph as values. A read is then scanned (k − 1)-mer by (k − 1)-mer trying
to find hits in the hash table. If a single hit is found, the alignment is tried
to be extended over the unitigs on both sides of the overlap. If multiple hits
are found, the algorithm tries to find a suitable path from the graph that
matches the hits and the read is aligned against the unitigs found along the
path. In both cases the alignment’s score has to reach a given threshold to
be accepted.

The second part is next explained in more detail. For the first t (in the
original paper t = 2) hits in a read, each pair of unitigs (connected by the
overlaps that caused the hit) is aligned on the reads on the position that the
hit suggests. The same is done with the last t hits. The best alignments are
picked as a beginning and an ending of a full path. Once this is done, the
algorithm greedily tries to match the next four possible unitigs implied by
the next hit, until there are no hits (and the beginning and the ending have
been connected). To speed up the process, if one of the unitigs ends with
the overlap that is next in line in the hit queue that unitig is tested first and
accepted straight if the resulting alignment’s score is within a given error
threshold. The psedocode of the second part of the algorithm can be seen in
Algorithm 1.

The beginning and the end of the path are done separately to reduce
unnecessary mapping calculation for reads that cannot be mapped. Also
this is done for the first t hits to prevent possible errors in the overlaps from
effecting the result.

The algorithm fails to find an alignment (a path) in three cases: (1) if
all the overlaps that should be found in the read contain errors, (2) the first
or last t overlaps and their unitigs won’t map (meaning the hits are false
positive) or (3) the greedy algorithm makes wrong choices and therefore the
beginning and the end is not connected.

5

Data: input: read r, int t
for t first overlaps of r do

Find a path beg that map the begin of r
if beg found then

for t last overlaps of r do
Find a path end that maps end of r
if end found then

Find in a greedy way a path cover that maps the read
from beg to end
if cover found then

write path
return

Algorithm 1: Mapping a read on unitigs of de Bruijn graph

4 Results

To test the mapping quality of BGREAT four sets of reads with different
complexities were used first to generate a compacted de Bruijn graph. The
graph was used to create contigs with external tools, Velvet and Minia
[ZB08][CR13]. Then the reads were mapped back on the de Bruijn graph
using BGREAT. For comparison, the reads were also mapped on the contigs
with another widely used mapping software, Bowtie2, the same software that
BGREAT uses on mapping the reads on unitigs.

On all four different data sets BGREAT was able to map back the reads
significantly better (from 1.6 to over 20 percent units) than Bowtie. The
mapping percentages can be seen in Table 4.1. As seen in the table, the gain
gets clearly larger when the complexity of the graph rises.

Reads mapped on
Reads from contigs graph
E.coli 95.57 % 97.16 %
C.elegans 80.60 % 93.24 %
C.elegans complex 56.33 % 89.15 %
H.sapiens 63.16 % 85.70 %

Table 4.1: Percentages of reads that were able to map back to contigs (first
column) or graph (second column) created from the reads. Three different
set were used, one of which was used to create also more complex graph (and
therefore also contigs?).

6

In previous tests the same reads were used to construct the de Bruijn
graph and then mapped back on it. In real life, however, the purpose is to
map a different individual or species against another and therefore some
differences (caused by mutations) exists between the the graph and the reads.
To test this, another set of reads of C.elegans was mapped on the previously
constructed graph resulting in 89 % reads mapped with 15 % of the reads
mapped on the second phase (on the branching paths).

Further tests were maid with following simulated data created from
human chromosome 1: Six set of reads were artificially generated from the
sequence with difference rate of 0, 0.1, 0.2, 0.5, 1.0 and 2.0 percents of the
original. They were then mapped on the de Bruijn graph created from the
original sequence. The quality of the alignments (of reads that were mapped
in right places) were then calculated using the number of mismatches as the
distance from original. The results can be seen in Table 4.2. As we can see
from the table, the quality is relatively good even with the highest difference
rate (99,9 % of the reads were mapped with at most 3 mismatches).

Difference percent Percent of reads that were mapped
within distance of

0 1 2 3
0 100 100 100 100
0.1 99.31 99.83 99.92 99.96
0.2 98.79 99.70 99.91 99.98
0.5 97.20 99.37 99.78 99.95
1 94.88 98.60 99.52 99.93
2 90.85 97.28 99.07 99.90

Table 4.2: Running time and peak memory usages of four different read sets
using BGREAT (first column) and Bowtie2 (second column). Read sets are
not comparable to each other due to different sizes (except with C.elegans).

The performance differences between the two mapping techniques are
shown in Table 4.3. Based on these results, BGREAT seem to be generally
faster than Bowtie and also consume significantly less memory while also
being able to reach better mapping percentages as pointed out previously.
The only case where BGREAT performs slower, is the complex graph of
C.elegans. However, this is also the case where the mapping percentage was

7

most improved (from Minia+Bowtie’s 53 % to BGREAT’s 85 %).
While de novo assembly of the contigs is actually a separate task of

mapping on the contigs, it’s reasonable to point out that the peak memory
consumption performing this task on C.elegans’ set of reads with Velvet was
over 80GB, while the BGREAT’s memory consumtion peaked only at 4GB.

BGREAT Bowtie2 (on contigs)
Reads from CPU time memory CPU time memory
E.coli 1m 40s 19 MB 3m 53s 29 MB
C.elegans 72m 31s 975 MB 33m 1.66 GB
C.elegans complex 51m 28s 336 MB 72m 31s 493 MB
H.sapiens 87h 9.7 GB 90h 15m 21 GB

Table 4.3: Running time and peak memory usages of four different read sets
using BGREAT (first column) and Bowtie2 (second column). Read sets are
not comparable to each other due to different sizes (except with C.elegans).

5 Conclusion

Mapping reads on reference contigs is a time and performance consuming
operation, that still has sapce to be improved. Using de Bruijn graph,
which is already sometimes used in constructing the contigs, instead of the
contigs as a reference can result significantly better mapping percentage with
good quality and less usage of computational resources. There are, however,
situations in which this method may fail, especially if the overlaps of the
graph are faulty. As the improved mapping relies heavily on these overlaps,
the issue is something to be looked at. Still, as the tests imply, even with
these flaws the the method surpasses the traditional way of mapping reads
on contigs in almost every aspect.

8

References

[CR13] Chikhi, Rayan and Rizk, Guillaume: Space-efficient and exact de
bruijn graph representation based on a bloom filter. Algorithms
for Molecular Biology, 8(1):1, 2013.

[LCRP15] Limaset, Antoine, Cazaux, Bastien, Rivals, Eric, and Peter-
longo, Pierre: Read mapping on de bruijn graphs. arXiv preprint
arXiv:1505.04911, 2015.

[LH10] Li, Heng and Homer, Nils: A survey of sequence alignment algo-
rithms for next-generation sequencing. Briefings in Bioinformatics,
11(5):473–483, 2010.

[LS12] Langmead, Ben and Salzberg, Steven L: Fast gapped-read align-
ment with bowtie 2. Nature methods, 9(4):357–359, 2012.

[RUC+11] Reece, Jane B, Urry, Lisa A, Cain, Michael L, Wasserman, Steven
A, Minorsky, Peter V, and Jackson, Robert B: Campbell Biology.
Pearson Education, 9. edition, 2011.

[SW81] Smith, Temple F and Waterman, Michael S: Identification of
common molecular subsequences. Journal of Molecular Biology,
147(1):195–197, 1981.

[ZB08] Zerbino, Daniel R and Birney, Ewan: Velvet: algorithms for de
novo short read assembly using de bruijn graphs. Genome research,
18(5):821–829, 2008.

9

	Introduction
	De Bruijn Graph
	The Algorithm
	Results
	Conclusion
	References

